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Operator splitting methods are commonly used in many applications. We focus
here on the case where the evolution equations to be simulated are stiff. We will more
particularly consider the case of two operators: a stiff one and a nonstiff one. This
occurs in numerous application fields (e.g., combustion, air pollution, and reactive
flows). The classical analysis of the splitting error may then fail, since the chosen
splitting timestep1t is in practice much larger than the fastest time scales: the
asymptotic expansion1t→ 0 is therefore no longer valid. We show here that singular
perturbation theory provides an interesting framework for the study of splitting error.
Some new results concerning the order of local errors are derived. The main result
deals with the choice of the sequential order for the operators: the stiff operator must
always be last in the splitting scheme.c© 2000 Academic Press
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1. INTRODUCTION

Operator splitting methods are widely used in many applications, such as Air Pollution
Modeling [10, 17, 30], combustion [19], or general hyperbolic systems [3, 9, 15]. The
first advantage of this approach is the use of specific tailor-made numerical solvers for each
physical phenomenon to be integrated (e.g., advection, diffusion, and chemical production).
The second advantage is the drastic reduction in CPU costs. Since the initial coupled
system may be stiff (mainly due to chemical terms), the Method of Lines (MOL) could be
highly expensive. The use of an implicit numerical scheme for the time integration is then
recommended and leads to a large amount of algebraic manipulations since the dimension
of the matrices to be inverted is typically given by the product of the number of variables,
the chemical species, and the number of grid cells. Even if some structure can be exploited
[5], the CPU cost is therefore rather large. As the only term inducing local coupling between
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species is the chemical production, an operator splitting method reduces the dimension of
the matrices to be handled to the number of species.

The drawback of this method is however the error due to the uncoupling of operators. The
classical analysis of such errors is based on asymptotic expansions of exponential operators
in the linear case [29, 34] with respect to the splitting time step. The generalization to the
nonlinear case [13, 22] proceeds in the same way with the help of Lie derivatives.

We will particularly focus on the case for which only one operator induces stiffness
(which is often the case in practice). We then want to integrate a linear evolution system
under a singular perturbation form

dz

dt
=
(
χ

ε
+ T

)
z, z(0) = z0, (1)

whereε is a small positive parameter tending to 0.ε measures the stiffness of the operator
χ

ε
and can be defined as the ratio of the fast time scales to the slow time scales.
First-order splitting schemes are easily defined by first integrating one operator and then

the other on time intervals of length1t (the so-called splitting time step). The usual analysis
in the linear case leads to a local splitting errorle, which is a second-order error in1t

le∼
(
χT − Tχ

ε
z0

)
1t2. (2)

Such an analysis is particularly hazardous in the stiff case, unless the splitting time step
actually tends to zero in order to meet1t¿ ε. As modelers are supposed to use efficient
solvers for the time integration (that is to say implicit schemes) this cannot be satisfied in
practice since this would be equivalent to stability requirements similar to those needed for
explicit schemes. Therefore we have in practice

1t À ε. (3)

The usual analysis leading to Eq. (2) should indicate that the error grows with stiffness.
Splitting errors are however rather low in practical situations (the errors due to the treatment
of boundary conditions being from now on neglected). The main reason for that is actually
the stabilizing effect of the stiffness: the theoretical counterpart of numerical stiffness is
indeed the existence of an underlying reduced model [14, 21, 24, 28]. Another point of view
is to say thatz0 lies in certain subspaces (even in the split model), such that the terms of
magnitudeε−1 disappear in the previous formula.

We will therefore follow an alternative analysis:

• we first compute up to first order inε the reduced models for the coupled and the split
schemes,
• we then compare with1t tending to 0.

The main advantage of this double-limit approach is that the perturbation terms in(1t)/ε
can be avoided.

Let us mention some related works to conclude. Such coarse integration has already been
studied for hyperbolic systems with a stiff relaxation term [2, 3, 9, 15]. The purpose was
however slightly different and focused mainly on grid refinement and shock tracking. A
similar analysis has been proposed in [1, 12] but was restricted to the oscillatory case, which
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is not pertinent for applications including phenomena such as chemical kinetics. Let us notice
moreover that the focus was not put on the crucial role of the sequence of integration. The
present article deals with the general case, both oscillatory and nonoscillatory, in contrast
to [1, 12], although the emphasis is put on the nonoscillatory case.

After having defined some splitting techniques (Section 2), we investigate the proposed
approach in the linear case (Section 3). Some numerical tests are then presented in the linear
case (Section 4) and for Reaction-Diffusion Partial Differential Equations issued from Air
Pollution Modeling (Section 5).

2. SPLITTING TECHNIQUES

Let us consider the following linear evolution system:

dz

dt
= Az+ Bz, z(0) = z0, z ∈ Rn, (4)

whereA andB are linear operators.
Let us first define the classical splitting schemes on [0,1t ], with 1t the splitting time

step.

2.1. First-Order Schemes

• (A–B) Splitting

We consider the scheme

{ dz∗
dt = Az∗, z∗(0) = z0 on [0,1t ]

dz∗∗
dt = Bz∗∗, z∗∗(0) = z∗(1t) on [0,1t ],

(5)

where the final value is given byz∗∗(1t).

• (B–A) Splitting

This method is defined by changing the sequence of successive integration forA andB.
Such schemes are first-order schemes with respect to the splitting time step1t . For

instance the local error for the (A–B) splitting is given by

le= (exp(B1t)exp(A1t)− exp((A+ B)1t))z0. (6)

The usual study of this error is performed by asymptotic expansion and leads straightfor-
wardly to

le= B A− AB

2
1t2z0+ O(1t3). (7)

The global error is then a first-order error with respect to1t unlessA andB commute.
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2.2. Second-Order Schemes

In order to improve the accuracy, Strang [29] proposed to symmetrize the splitting scheme.
A first approach is to take

z(1t) = 1

2
(zAB(1t)+ zB A(1t)), (8)

wherezAB andzB A are the solutions computed, respectively, with the schemes (A–B) and
(B–A). This is a rather expensive technique since each operator has to be integrated twice
on the splitting interval.

Another less time-consuming approach is then defined by the scheme
dz∗
dt = Az∗, z∗(0) = z0 on

[
0, 1t

2

]
dz∗∗
dt = Bz∗∗, z∗∗(0) = z∗

(
1t
2

)
on [0,1t ]

dz∗∗∗
dt = Az∗∗∗, z∗∗∗(0) = z∗∗(1t) on

[
0, 1t

2

]
.

(9)

The final value is then given byz∗∗∗(1t
2 ). We will name (A–B–A) this scheme and a scheme

(B–A–B) can be derived in the same way. The interesting point is that the local error
associated with this scheme is then

le=
(

exp

(
A
1t

2

)
exp(B1t)exp

(
A
1t

2

)
− exp((A+ B)1t)

)
z0 (10)

and an asymptotic expansion leads easily to

le= O(1t3). (11)

This scheme is then a second-order scheme and is used in practice for many applications.

Remark[Higher order terms]. Higher order terms can be computed with the use of
the Baker–Campbell–Hausdorff formula. We refer for instance to [8, 13]. Numerous ex-
trapolation techniques have been proposed for improving the accuracy of such schemes
[32].

Remark[Extension to the nonlinear case]. Such an analysis can be performed in the
nonlinear case with the use of the Lie operator formalism [13, 22]. We do not focus here on
this point since we instead want to stress the influence of the stiffness on such analysis. The
linearity will not play any role in the following analysis but it will clarify the computations.
Nonlinear operators (associated with chemical kinetics) will however be taken into account
in the numerical examples (Section 5).

2.3. No Time Splitting and Source Splitting

Another less common splitting scheme has been already proposed, mainly for Air Pollu-
tion Modeling [11, 30]. It is a slight modification of a first-order scheme as one operator (let
us sayA) is supposed to be nonstiff. In order to avoid transient phases due to stiffness, the
initial conditions for the second substep are not modified but a source term must be added
in order to take into account the first substep.
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The proposed scheme can be put in the form{ dz∗
dt = Az∗, z∗(0) = z0 on [0,1t ]

dz∗∗
dt = Bz∗∗ + z∗(1t)−z0

1t , z∗∗(0) = z0 on [0,1t ].
(12)

The final value is thenz∗∗(1t). Let us notice that this is equivalent to an explicit integration
of the nonstiff operator A.

We will call this scheme(NTS) (in the terminology of [30] where such a scheme is
referred as “No Time Splitting”).

Let us compute the local error for this scheme. We have straightforwardly

zNTS(1t) = exp(B1t)

[
I +

∫ 1t

0
exp(−t B) dt

exp(A1t)− I

1t

]
z0. (13)

We use the asymptotic expansion of the exponential operator and we obtain directly

zNTS(1t) =
[

I + (A+ B)1t + A2+ B2+ B A

2
1t2+ O(1t3)

]
z0 (14)

and

le= zNTS(1t)− exp((A+ B)1t)z0 = − AB

2
1t2z0+ O(1t3), (15)

which confirms the first-order nature of this scheme.

Remark [Why we do not consider the other(NTS) scheme]. Another(NTS) scheme can
of course be defined by reversing the sequence. We will not consider this scheme. The first
immediate reason is that it is well understood that integrating explicitely a stiff operator (let
us say B) makes no sense. The importance of finishing the integration with the stiff operator
B will be stressed in the next section.

3. AN ALTERNATIVE APPROACH FOR SPLITTING ERRORS

3.1. Why the Classical Error Analysis May Fail in the Stiff Case

Let us now focus on the case

A = χ(ε)

ε
, B = T, (16)

whereχ(ε)=χ0+ εχ1 is a slow–fast operator which induces the stiffness (for instance
chemical kinetics) andT is a slow operator (for instance the spatial discretization of
diffusion).
χ0 andχ1 denote, respectively, the fast and slow parts ofχ . ε is as expected a small

positive parameter supposed to tend to 0.
The key point is that

1t À ε (17)
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is met in practice since tailored algorithms are used for the time integration of the stiff
operatorA. Let us mention that1t ∼ ε or1t¿ ε are exactly the stability requirements for
explicit schemes which are actually avoided in order to improve the CPU performance. We
will name this practical case thecoarse case.

Some immediate remarks can then be mentioned on the basis of the usual local error for
first-order schemes (e.g.,(T −χ)) which yields

le∼
(
χ

ε
T − T

χ

ε

)
z01t2

2
(18)

by using (7) although higher order terms may be of course much larger.

1. The sequential order of integration should have no influence on accuracy in the usual
analysis: the schemes(T −χ) and(χ − T) should then have the same behavior. This is
rather surprising in the stiff case for which one operator is associated with slow dynamics
(T) and the other one with slow and fast dynamics (χ ). If χ is only concerned with fast
dynamics (χ1= 0) one could advocate to first integrate the fast dynamics (χ ) and then the
slow ones (T).

2. Such a local error would indicate that the error is an increasing function in the stiffness
ratio ε (with a fixed1t). This is in total contradiction with the widespread argument that
splitting schemes have to be used for well separated timescales (related toε→ 0).

By anticipating the first example in Section 5, Fig. 1 gives the relative error for the
splitting schemes(χ − T) and(T −χ) as a function of the splitting time step.χ describes
here a particular kinetic scheme arising in atmospheric chemistry andT describes the
discretization of a monodimensional diffusion term.

As a result of this test the sequence seems to be important. The scheme we naively
advocated in our first remark is therefore not the good one: one has rather to begin the
splitting process with the slow dynamics (T) and to end with the fast dynamics (χ )!

FIG. 1. Some surprising results (Example 5.1).
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Our second remark applies to the “good splitting” (T −χ ) after having noticed that
1t→∞ can be “replaced” withε→ 0 in a scaling analysis. This is a rather surprising be-
havior: the bigger the splitting time step is, the more accurate the “good splitting” (T −χ ) is!

3.2. Reduction

In order to investigate such behavior we want now to replace the usual analysis by
an alternative analysis. As the main difficulty is provided by stiffness, we compute the
underlying “reduced” model [14, 21, 23, 24, 28], which approximates the exact solution up
to first-order inε. We will then compare the reduced models respectively associated with
the splitting schemes and with the exact solution which for both operators are integrated
simultaneously.

Another point of view is that we want to assess the asymptotic behavior of the splitting
schemes with respect to an increasing stiffness (asε tends to 0): do the splitting schemes
preserve the same behavior as the exact solution?

We refer to [14, 21, 23, 24, 28] for the theoretical background and more details on
reduction. We will only mention the kernel of this theory.

Let us recall that the stiff operatorχ is partitioned as

χ = χ0+ εχ1, (19)

whereχ0 andχ1 stand, respectively, for the fast and slow parts.

Assumption: slow–fast structure forχ0. We assume the “semi-stability” of the fast
operatorχ0:

• the eigenvalues ofχ0 are either null or have a strictly negative real part,
• the following subspace decomposition holds:

Rn = ker(χ0)⊕ R(χ0). (20)

Let us stress the fact that such an (apparently) technical assumption is usually met for
chemical kinetics [14, 24].

Let n− p be the dimension ofker(χ0). Such an hypothesis justifies the existence of a
change of basis

M =
[

P
Q

]
, M−1 = [ P̄ Q̄], (21)

whereM , P, andQ are, respectively,n× n, (n− p)× n, andp× n matrices.P̄ andQ̄ are,
respectively,n× (n− p) andn× p matrices.P is chosen such thatPχ0= 0 that is to say
that the lines ofP are given by a basis ofR(χ0)

⊥. A consequence is that the columns ofQ̄
define a basis ofR(χ0) sincePQ̄= 0.

Let us now write

x = Pz, y = Qz, x ∈Rn−p, y∈Rp. (22)

This change of basis is a decoupling transformation:x is a slow variable whiley is a fast
variable since:

M
χ0

ε
M−1=

[
0 0
C
ε

−D
ε

]
, (23)
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where−D= Qχ0Q̄ is a strictly stable square matrix (whose dimension isp). This point
is easy to prove: letQχ0Q̄u= 0 with u∈Rn. We then haveQ̄Qχ0Q̄u= 0. By using
P̄ P+ Q̄Q= I and Pχ0= 0, this impliesχ0Q̄u= 0. That is to say that̄Qu∈ ker(χ0). As
Q̄u∈ R(χ0) we haveu= 0 and this ends the proof.

In the following we will refer to this new basis as thepartitioned basis. It is now easy to
derive the evolution in this basis:{ dx

dt = Pχ1(P̄x+ Q̄y)+ PT(P̄x+ Q̄y)

ε
dy
dt = Cx− Dy+ εQχ1(P̄x+ Q̄y)+ εQT(P̄x+ Q̄y)

(24)

with the prescribed initial conditions

x(0) = Pz(0), y(0) = Qz(0). (25)

In our analysis we will first assume thatε tends to zero with a fixed1t (coarse case for
time splitting). The direct application of classical results of singular perturbation theory
[31] ensures the following result we give in a formal way.

THEOREM3.1. Up to a transient phase(of length O(ε)), the initial system(24) can be
approximated up to first order inε by the differential-algebraic system(of index1):

dx

dt
= Pχ1(P̄x+ Q̄y)+ PT(P̄x+ Q̄y), 0= Cx− Dy (26)

with the modified initial conditions(consistent with the algebraic constraint)

x(0) = Pz(0), y(0) = D−1Cx(0). (27)

For t ∈ [0,1t ] the error associated with the reduced solution(26)can be put in the form

O(ε)+ O

(
exp

(
−γ1t

ε

))
, (28)

whereγ >0 depends only on D and indicates the rate of convergence toward the reduced
model.

Such an approximation is of course valid only in the coarse case (1tÀ ε).
From now on the approximation symbol∼will hold for the error associated with reduction

and its magnitude is given by (28).
If we go back to the initial basis, the reduced solution associated with the exact model

(that is to say without splitting) is then easily given by

zWS(1t)∼ (P̄ + Q̄D−1C)exp[ P(χ1+ T)(P̄ + Q̄D−1C)1t ] Pz0, (29)

sincez= P̄x+ Q̄y. From now on the subscripts “WS” (Without Splitting) will stand for
the case for which the operators are integrated simultaneously..

We will write for convenience in the sequel

K = P̄ + Q̄D−1C, S= Pχ1K (30)
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K is a rectangular matrix defined by the change of variables from the reduced model to the
initial basis.S is the slow term induced by the stiff operator in the reduced model. With
these notations we straightforwardly have the following lemma:

LEMMA 3.1 (Reduced model for the exact solution WS).

zWS(1t) ∼ K exp[(S+ PT K)1t ] Pz0 (31)

3.3. Computing a Reduced Solution for the Splitting Schemes

Let us now calculate the reduced solution for each of the splitting schemes.

LEMMA 3.2 (Reduced model for different splitting schemes).

zT−χ (1t) ∼ K exp(S1t)P exp(T1t)z0

zχ−T (1t) ∼ exp(T1t)K exp(S1t)Pz0

zχ−T−χ (1t) ∼ K exp
(
S1t

2

)
P exp(T1t)K exp

(
S1t

2

)
Pz0

zT−χ−T (1t) ∼ exp
(
T 1t

2

)
K exp(S1t)P exp

(
T 1t

2

)
z0

zNTS(1t) ∼ K exp(S1t)
[
P + ∫ 1t

0 exp(−t S) dt Pexp(T1t)−I
1t

]
z0

(32)

Proof. We keep the same notations as in Section 2 for defining the substeps of the
splitting methods. We will omit some computations left to courageous readers (if any).

For the(T −χ) splitting we have for the second step (by using (24) withT = 0):
dx∗∗
dt = Pχ1(P̄x∗∗ + Q̄y∗∗)

ε
dy∗∗
dt = Cx∗∗ − Dy∗∗ + εQχ1(P̄x∗∗ + Q̄y∗∗),

(33)

wherez∗∗(0)= exp(T1t)z0. We then have easily

zT−χ (1t) ∼ K exp(S1t)P exp(T1t)z0. (34)

We proceed in the same way for the(χ − T), (χ − T −χ), and(T −χ − T) splittings.
For the splitting (NTS) we must reduce the following ODE (see (12) and (24)):{dx∗∗

dt = Pχ1(P̄x∗∗ + Q̄y∗∗)+ P1T

ε
dy∗∗
dt = Cx∗∗ − Dy∗∗ + εQχ1(P̄x∗∗ + Q̄y∗∗)

(35)

with

1T = exp(T1t)− I

1t
z0 and z∗∗(0) = z0.

We obtain straightforwardly the reduced model in the form

dx∗∗

dt
= Pχ1K x∗∗ + P1T, 0= Cx∗∗ − Dy∗∗, (36)
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which leads after some calculations to:

zNTS(1t) ∼ K exp(S1t)

[
P +

∫ 1t

0
exp(−t S) dt P

exp(T1t)− I

1t

]
z0 (37)

by using the definitionS= Pχ1K . We recover the desired formula.

In order to have a more elegant formulation of these models we introduce the square
matrix:

5 = K P. (38)

LEMMA 3.3 (Projection onto the reduced model).5 is a projection matrix onto the
reduced model. Moreover for any square matrix R,

K exp(P RK)P = exp(5R)5. (39)

Proof. Let us first notice that

52 = K P K P = K (PK)P (40)

with

P K = P(P̄ + Q̄D−1C) = I (41)

by usingPP̄= I andPQ̄= 0.
5 is therefore a projection matrix. The projection is made onto the reduced model since

z= P̄x+ Q̄y, Cx− Dy = 0⇔ z= K Pz= 5z. (42)

The second point is obtained by recurrence: for anyn≥ 0,

K (P RK)n P = (5R)n5 (43)

which ends the proof.

LEMMA 3.4 (Reduced solutions).The reduced solutions are then

zWS(1t) ∼ exp(5(χ1+ T)1t)5z0

zT−χ (1t) ∼ exp(5χ11t)5 exp(T1t)z0

zχ−T (1t) ∼ exp(T1t) exp(5χ11t)5z0

zχ−T−χ (1t) ∼ exp
(
5χ1

1t
2

)
5 exp(T1t) exp

(
5χ1

1t
2

)
5z0

zT−χ−T (1t) ∼ exp
(
T 1t

2

)
exp(5χ11t)5 exp

(
T 1t

2

)
z0

zNTS(1t) ∼ exp(5χ11t)
[
5+ ∫ 1t

0 exp(−t5χ1) dt5exp(T1t)−I
1t

]
z0.

(44)

Proof. The proof is straightforward with Lemmas 3.1, 3.2, and 3.3.
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3.4. Local Errors for the Reduced Models

In order to compare these reduced models we now perform an asymptotic expansion in
1t as usual. For the splitting schemeα, we will write

leα = zα(1t)− zWS(1t), (45)

wherezα(1t) andzWS(1t) denote the dominant term (up to first-order inε) for the reduced
solutions computed, respectively, for the splitting schemeα and for the exact solution. We
have then the following result:

LEMMA 3.5 (Local error for the reduced models).



leT−χ = 5T(I −5)z01t + O(1t2)

leχ−T = (I −5)T5z01t + O(1t2)

leχ−T−χ = 5T(I −5)T5z0
1t2

2 + O(1t3)

leT−χ−T = (T5+5T − 25 T5)z0
1t
2 + O(1t2)

leNTS= 5T(I −5)z01t + O(1t2)

(46)

Proof. After some tedious calculations.

Let us notice that the accuracy seems to be poorer than in the nonstiff case (as the naive
application of the usual analysis could indicate it).

The key point is however that some splitting schemes will preserve the structure of the
reduced model, which allows then to improve the local order: that is to say that the computed
solution for these schemes is actually onto the reduced model. We indeed recover second-
order local error for(χ − T) if (I −5)T5= 0, which is a very strong condition on the
operators5 andT (a sufficient condition is for instance that they commute). On the other
hand, we recover second-order local error for(T −χ) if (I −5)z0= 0, which is only a
condition on the current valuez0. This is rather easy to meet for some schemes as the next
lemma shows it.

LEMMA 3.6 (Conservation of the exact reduced structure).The splitting schemes(T −
χ), (NTS), and(χ − T −χ) conserve the reduced manifold defined by the projection matrix
5:

5 zT−χ = zT−χ , 5zχ−T−χ = zχ−T−χ , 5zNTS= zNTS, (47)

which must be compared with

5zWS= zWS. (48)

• The splitting schemes(χ − T) and(T −χ − T) conserve the reduced structure under
the commuting condition

(I −5)T5 = 0. (49)
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Proof. Let us consider a schemeα which can be put in the form

zα = exp(5 R′)5 z′. (50)

We have directly

5exp(5 R′) = 5− I + exp(5R′) (51)

by using the asymptotic expansion of the exponential operator and the fact that5 is a
projection matrix. Then

5zα = exp(5R′)5z′ = zα (52)

since(I −5)5= 0.
This concludes the proof for the schemes(T −χ) , (NTS), and(χ − T −χ).
• By using (44) we can put the schemes(χ − T) and(T −χ − T) in the form

zα = exp(λT) exp(5χ11t)5 z′, λ ∈ R. (53)

By using once more the asymptotic expansion of the exponential operator one has

zα = 5 z′ + (exp(λT)− I )5(∗), (54)

where the stars stand for uncomputed terms. Let us assume that the decoupling condition
(49) is met:

T5 = 5T5. (55)

It is easy to obtain by recurrence that for anyn> 0 one has

Tn5 = 5Tn5, (56)

which leads to

zα = 5 z′ +5(exp(λT)− I )5(∗). (57)

This ensureszα =5 zα.

Remark[Commuting condition]. The terminology we use is justified by the equivalence
of (49) with

(T5−5T)5 = 0. (58)

The interpretation of this lemma is rather simple: the exact solutionWSand the splitting
schemes for which the stiff operatorχ ends the iteration always preserve the reduced
structure of the coupled system. Indeed the stiff operator alone determines this structure
[21, 23, 28] whatever the nonstiff operator is and acts as a projection onto the reduced
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FIG. 2. Dynamical behavior of splitting schemes.

model. The integration of the nonstiff operator does not ensure that the solution remains
near the reduced model unless the commuting condition is met.

The dynamical behavior of the exact solutionWSand of the splitting schemes is indicated
in Fig. 2. The trajectories are plotted in the phase space(x, y) and parametrized by timet .
The wide black curve is the reduced algebraic constraint defined in the general case by
y= h(x) (in the linear case:y= D−1Cx). The numbers 1, 2, and 3 stand for the substeps
of the splitting schemes. Numbers 1 and 2 stand, respectively, for the inner and outer layers
for the exact solution.

It is therefore logical to consider an initial conditionz0 belonging to the reduced manifold

5z0 = z0

for the splitting methods conserving the reduced structure. Let us notice that the exact
solution satisfies such a requirement after the transient phase (whose length isO(ε)). Under
this assumption, which is therefore satisfied without any loss of generality, the local errors
can be simplified.
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LEMMA 3.7 (Local errors in the outer phase).

• Under the condition5z0= z0, the local errors for the splitting schemes conserving
the reduced structure are given by

leT−χ = O(1t2)

leχ−T−χ = 5 T(I −5)T5z0
1t2

2 + O(1t3)

leNTS= O(1t2).

(59)

The splitting methods(T −χ) and (NTS) are indeed first-order schemes while Strang
splitting (χ − T −χ) is only a first-order scheme.
• Strang splitting(χ − T −χ) is a second-order method if and only if the commuting

condition

5 T(I −5)T5 = 0 (60)

is met.
• We recover the usual order for the splitting schemes(χ − T) and(T −χ − T) under

the commuting condition(49).

Proof. Straightforwardly with(I −5)5= 0.

Remark[Commuting conditions]. The same remark as before holds for (60) written in
the form

5T(5T − T5) = 0. (61)

Let us notice that the decoupling condition (49) implies (60).

Remark[Order reduction for ODEs]. The same phenomenon has already been observed
for the numerical integration of stiff ODEs. In a few words, the study of local errors is usually
made with a fixed stiffness ratio (that is to say a fixed Lipschitz constant) and a time step
tending to 0; that is, the study is done for stiff systems in a framework of an explicit
integration! The practical order of accuracy is unfortunately often lower than the theoretical
one given by such an analysis. We refer to [20] and [4] for an alternative analysis. Let us
mention that reduced solutions are also used in this context (see for instance [16, 18]). The
use of such tools provided by numerical analysis is the topics of a joint work with Jan
Verwer [33].

3.5. Errors for Slow and Fast Variables

It could be interesting to study the errors as a function of the dynamical behavior of the
variables: are there any differences between slow variables and fast variables?

This is a relevant question in practice for at least two reasons:

• one is not necessary interested in having good accuracy for all variables (e.g., radicals
may be not followed in chemical kinetics),
• such a study could indicate that it is better to work in a basis different from the initial

one.

We first investigate the case of purely slow variables (defined as the variables not con-
cerned by stiffness). We investigate thereafter the case of the partitioned basis as defined in
Section 3.2.
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3.5.1. Purely Slow Variables

Let us define the purely slow variables as those corresponding to null lines ofχ0. Such
purely slow variables are not directly affected by stiffness. It may then be expected that
accuracy is not greatly degraded for them.

LEMMA 3.8 (Splitting errors for purely slow variables).The local error for purely slow
variables is of second-order for the splitting scheme(χ − T).

Proof. We are going to investigate the local error derived in Lemma 3.5. Let us recall
that

leχ−T = (I −5)T5z01t + O(1t2). (62)

Let i be the number of purely slow variables (eventually zero). Let us suppose that (even-
tually after a permutation) the first variables are purely slow variables. We have then by
keeping the same notations as before

P =
[

I 0
0 a

]
, (63)

whereI is thei × i identity matrix anda is a(n− p− i )× (n− i ) matrix. Moreover

Q = [0 b], (64)

whereb is a p× (n− i ) matrix. We can then find̄P andQ̄ in the form

P̄ =
[

I 0
0 ā

]
, Q̄ =

[
0

b̄

]
, (65)

whereI is thei × i identity matrix,ā is a(n− i )× (n− p− i )matrix and̄b is a(n− i )× p
matrix.

Let us partition thep× (n− p) matrixC in the form

C = [C1 C2] (66)

with C1 andC2 being, respectively,p× i andp× (n− p− i )matrices. We can then easily
compute

K = P̄ + Q̄D−1C =
[

I 0

b̄D−1C1 ā+ b̄D−1C2

]
(67)

in the same block partitioning.
In the same way

5 = KP=
[

I 0
∗ ∗

]
, I −5 =

[
0 0
∗ ∗

]
, (68)

where the asterisks stand for uncomputed blocks. We conclude with

(I −5)T =
[
0 0
∗ ∗

]
, (69)

which concludes the proof by using (62).
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3.5.2. Partitioned Basis

We now investigate the choice of the basis: can we find a set of variables (other than
purely slow variables) such that the splitting error is lowered? We will study the error in the
partitioned basis.

For convenience we assume that

P = [ I 0], Q = [0 I ], z= [x y]t . (70)

This can be done without any loss of generality by working directly in the partitioned
basis(x, y) as defined in Section 3.2. We then have in this basis (with a coherent block
partitioning)

5 =
[

I 0

D−1C 0

]
, (71)

and we will write

T =
[
Txx Txy

Tyx Tyy

]
. (72)

LEMMA 3.9 (Local errors in the partitioned basis).In the partitioned basis,

leχ−T−χ =
[

TxyU 0

D−1CTxyU 0

]
z0
1t2

2

leχ−T =
[

0 0

U 0

]
z01t

leT−χ−T =
[ −Txy D−1C Txy

U − D−1CTxyD−1C D−1CTxy

]
z0
1t

2

(73)

with

U = Tyx + TyyD−1C − D−1C(Txx + TxyD−1C). (74)

Proof. The proof is easy to perform by using Lemma 3.5 and by computing the mat-
rices.

Remark[Lumped species and operator splitting]. Let us notice that some interesting
simplifications occur ifTxy= 0. By remembering thatT stands for the matrix of diffusive
coefficients in the framework of Reaction-Diffusion equations, this assumption is met if
intermolecular diffusion is not taken into account (which is the case for turbulent diffusion).

The application of the previous results indicates then the loss of accuracy for the splitting
schemes(χ − T) and(T −χ − T) is associated only with the fast variables.

Lumped species [26, 27] are widely used in applications such as Air Pollution Modeling.
This trick is equivalent to changing the basis of variables and with working directly with
slow speciesx (in our notation). Lumped species are recommended for use in tailor-made
numerical solvers based on reduced mechanisms [6, 26]. The former result is a confirmation
that it is actually always better (whatever the numerical solver is) to use lumped species in
the framework of operator splitting: the accuracy for lumped species is indeed better than
for pure fast species if the splitting schemes(χ − T) and(T −χ − T) are used.
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3.6. Well-Partitioned Time Scales

Let us now consider the case for whichχ is a purely fast operator whileT is a slow
operator. At the algebraic level one then has

χ1 = 0. (75)

This can always be obtained in the general case by modifying the splitting method and by
addingχ1 to T before splitting.

It would be interesting to recover the intuitive feeling that the better partitioned the time
scales are, the more accurate is the splitting scheme.

3.6.1. Singular Perturbation as a Time Splitting Approach in the Well-Partitioned Case

The former analysis holds but the comparison of the exact solutionWSwith the splitting
(χ − T) is enlightening. The singular perturbation theory indeed justifies that the initial
slow–fast model can be approximated up to some orders inε by integrating successively
the fast and then the slow operator. The scheme(χ − T) then seems to be highly natural.
Why is there a loss of accuracy even in this well-partitioned case ? Let us recall the singular
perturbation procedure by formulating Theorem 3.1 in the following way:

1. First integrate the inner layer on [0,∞[:

dx∗

dτ
= 0,

dy∗

dτ
= Cx∗ − Dy∗, whereτ = t

ε
, (76)

which provide the modified initial conditions (27). This is exactly the first step of the splitting
scheme(χ − T) as1t

ε
tends to+∞!

2. Then integrate the outer layer on [0,1t ]:

dz∗∗

dt
= 5T z∗∗, (77)

where the projection matrix has to be applied in order to modify the initial termT . This is
exactly the reduced model (26). This must be compared with the second step of the splitting
scheme(χ − T):

dz∗∗

dt
= T z∗∗. (78)

The error for this scheme is obviously associated with the departure from the reduced
manifold as it has been already proved in the former results. The most accurate splitting
scheme would be the scheme derived from singular perturbation theory, that we could (for-
mally) write(χ −5T). Let us notice that under the assumption1tÀ ε, the accuracy of such
a scheme is dominated byε and does not depend on the splitting timestep1t in this sense!

Remark[Reduction vs operator splitting]. There is a kind oftrade-offbetween Operator
Splitting and Reduction. The most physical splitting (fast–slow) is given by the reducing
approach (that is to say, the singular perturbation procedure): this is a highly accurate
splitting (the error does not depend on1t) but it is an expensive method (one must compute
the projection matrix5: that is to say, to compute the reduced chemical mechanism in
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TABLE I

Reduction versus Operator Splitting

Method CPU performance Accuracy

Reduction could be expensive high:O(ε)
(compute5(z))

Splitting slow–fast good medium:O(1t)
Splitting fast–slow good low

the usual framework [26]). Slow–fast operator splitting (T −χ ) is then the only alternative
method: it is a very cheap one (nothing to do) but the price is the splitting error due to the
fact that it is a nonphysical splitting (see Table I).

3.6.2. A Particular Case: Highly Accurate Splitting

Such an attractive feature can be performed with the classical splitting schemes(T −χ),
(NTS), and(χ − T −χ ) in particular cases.

LEMMA 3.10 (Commuting case).Under the commuting condition

5T(I −5) = 0 (79)

the splitting schemes(T −χ ), (N T S), and(χ − T −χ ) are highly accurate in the coarse
case(1tÀ ε):

leT−χ = O(ε), leχ−T−χ = O(ε), leNTS= O(ε). (80)

Proof. Let us recall that the reduced solutions, which have been previously computed,
are approximations of the exact solutions associated with each scheme up to first order inε:

zWS∼ exp(5 T1t)5z0

zT−χ ∼ 5exp(T1t)z0

zχ−T−χ ∼ 5exp(T1t)5z0

zNTS∼ 5exp(T1t)z0.

(81)

We use asymptotic expansions of the exponential operators and the proof is then straight-
forward by recurrence. Let us suppose that for anyn> 1,

(5 T)n = 5 Tn, 5Tn5 = 5Tn. (82)

Under the assumption5T =5T5

(5T)n+1 = (5T)(5T)n = (5T)5Tn = (5T5)Tn = 5T Tn (83)

5Tn+15 = 5T5Tn5 = 5T(5Tn5) = 5T5Tn = 5T Tn, (84)

which concludes the proof.

Remark[Commuting condition]. Equation (79) can be written as

5(T5− T5) = 0. (85)
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This is equivalent toTxy= 0 (with the same notations as before) since

5 T(I −5) =
[ −TxyD−1C Txy

−D−1CTxyD−1C D−1CTxy

]
. (86)

It is therefore associated with the following form of system to be split:

dx

dt
= Txxx, ε

dy

dt
= Cx− Dy+ ε(Tyxx + Tyyy). (87)

Let us notice that the usual analysis does not give any such information. A direct calcu-
lation leads for instance to a commutator:

χT − Tχ =
[

0 0
CTxx − DTxy− TxyC TyyD − DTyy

]
. (88)

Remark[Validity of the assumption]. Let us notice that such a condition may occur in
the Reaction-Diffusion case with a purely fast chemistry and a diagonal diffusion matrix.
Formally,

Txx = kxx I , Txy = Tyx = 0, Tyy = kyyI , (89)

whereI stands for Identity matrices.
This is the case for instance in Air Pollution Modeling where the turbulent diffusion

matrix is a diagonal matrix (no diffusion between species). We will go back to this remark
in Section 5.

Remark[Decoupling condition]. Let us notice that the decoupling condition (79) (which
ensures highly accurate splitting) implies the decoupling condition (60) (which ensures that
(χ − T −χ) is a second-order method).

3.7. Summary of the Main Results

Let us now summarize the main points of our analysis in the coarse case:

• The “first-order” splitting schemes(T −χ) and(NTS) are indeed first-order schemes.
• The “second-order” splitting scheme(χ − T −χ) is only a first-order scheme in the

general case.
• The respectively “first-order” and “second-order” schemes(χ − T) and(T −χ − T)

give only poor accuracy. However, for purely slow variables we recover the usual orders.
• The usual orders are maintained under the condition

(I −5)T5 = 0. (90)

Remark[After all, stiffness is a good thing!]. What about the global error as order
reduction occurs?

The key point is that stiffness has a stabilizing effect and that the local errors for fast
species do not propagate. The following simple example is an enlightening illustration (the
general case can be computed in the same way),

dx

dt
= −x,

dy

dt
= x − y

ε
. (91)
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The slow and fast operators are repectively associated with the time integration ofx andy.
Let n be the iteration index. The exact solution is then

xWS
n+1 = e−1t xn, yWS

n+1 =
xne−1t

1− ε +
(

yn − xn

1− ε
)

exp

(
−1t

ε

)
. (92)

Let (xn+ η1
n, yn+ η2

n) be the solution computed with the bad splitting (fast–slow), whereη1
n

andη2
n denote global errors aftern iterations. We have very easily for the splitting fast–slow:

xn+1 = e−1t
(
xn + η1

n

)
, yn+1 = xn + η1

n +
(
yn + η2

n − xn − η1
n

)
e−

1t
ε . (93)

The interesting point is that the error for slow species (η1
n) is stabilized and that the first-

order local error for fast species (η2
n) has been put to zero (since it appears in the boundary

layer term)! The only error which propagates is the error for slow species (η1
n) which is a

second-order error.

4. SOME NUMERICAL TESTS IN THE LINEAR CASE

We have performed some numerical tests in order to illustrate the previous analysis in the
linear case. We have used the solver LSODE [7] with highly accurate absolute and relative
error parameters: the parametersrtol andatol are set, respectively, to 10−10 and 10−15.

We have integrated linear ODEs inR3 and we write as(u, v, w) the variables to be
integrated.

In the following, we have mainly studied a fast part of the stiff operator given by

χ0

ε
=
−1000 1000 0

1000 −1000 0
0 0 0

, (94)

which corresponds to a stiffness ratioε= 10−3. The following results are not modified by
changingε.

It is easy to derive the projection matrix

5 = 1

2

1 1 0
1 1 0
0 0 2

. (95)

In the previous terminologyu andv are concerned with fast dynamics whilew is a purely
slow variable.

We have used a splitting timestep1t ranging from 1. to 10−3. We expect to recover the
usual analysis with1t = 10−3 and to confirm our analysis for the coarse case1t = 0.1 and
1t = 0.01. The case1t = 1. is highly coarse (even if it could correspond to the practical
situation) and we expect only to confirm atrend in this case.

4.1. Nonstiff Case (Case 1)

We first study the nonstiff case withχ0= 0 and

χ = χ1 =
−1 1 0

1 −1 0
0 0 0

, T =
−3 1 0

2 −2 0
0.2 0 −1

. (96)



160 BRUNO SPORTISSE

TABLE II

Case 1. Relative Error att = 4

1t (χ − T) (T −χ) (χ − T −χ) (T −χ − T)

10−3 1.39· 10−4 1.41· 10−4 ∼0 ∼0
10−2 1.39· 10−3 1.39· 10−3 1.21· 10−5 7.6 · 10−6

10−1 1.37· 10−2 1.41· 10−2 1.01· 10−3 8.66· 10−4

1. 8.8 · 10−2 11.4 · 10−2 6.3 · 10−2 5.14· 10−2

As Table II shows, we recover the classical behavior as1t tends to 0. The order is actually
confirmed and there is no difference between the first-order schemes (respectively, between
the second-order schemes).

4.2. Stiff Case:χ1 = 0 and No Commuting Condition (Case 2)

We have kept the same matrixT as before but we have now

χ = χ0

ε
=
−1000 1000 0

1000 −1000 0
0 0 0

, (97)

which corresponds to the stiff case withχ1= 0. Table III indicates that the schemes(T −χ)
and(χ − T −χ) have a better accuracy in the coarse case.(χ − T −χ) is however only a
first-order scheme in this regime (which is equivalent with(T −χ) in this particular case).

It is interesting to confirm the previous analysis concerning purely slow variables. In this
caseu andv are concerned with fast dynamics whilew is a purely slow variable in the
previous terminology. The relative errors plotted in Tables IV, V, VI and VII confirm thatw

is not affected by the loss of accuracy in the schemes(χ − T) and(T −χ − T) in contrast
to fast variablesu andv. The error forw is indeed the same for all schemes.

4.3. Stiff Case:χ1 =/ 0 and No Decoupling Condition (Case 3)

We have kept the same matrixT as before but we have now

χ =
−1000 1000 1

1000 −1000 2
0 1 −1

, (98)

which corresponds toχ1 6= 0.

TABLE III

Case 2. Relative Error att = 1

1t (χ − T) (T − χ) (χ − T − χ) (T − χ − T)

10−3 4.4 · 10−4 2.33· 10−4 5.4 · 10−5 1.1 · 10−4

10−2 6.4 · 10−3 4.88· 10−4 4.87· 10−4 3.13· 10−3

10−1 5.9 · 10−2 1.91· 10−3 1.91· 10−3 3.21· 10−2

1. 21.8 · 10−2 8.31· 10−3 8.31· 10−3 17.8 · 10−2
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TABLE IV

Case 2. Relative Error att = 1 for (χ− T)

1t u v w

10−3 6.55· 10−4 6.55· 10−4 1.6 · 10−5

10−2 9.35· 10−3 9.35· 10−3 4.7 · 10−4

10−1 8.6 · 10−2 8.6 · 10−2 3.0 · 10−3

1. 32.0 · 10−2 32.0 · 10−2 2.4 · 10−2

TABLE V

Case 2. Relative Error att = 1 for (T−χ− T)

1t u v w

10−3 1.6 · 10−4 1.6 · 10−4 1.6 · 10−5

10−2 4.5 · 10−3 4.5 · 10−3 4.6 · 10−4

10−1 4.6 · 10−2 4.6 · 10−2 4.5 · 10−3

1. 26.0 · 10−2 26.0 · 10−2 1.7 · 10−2

TABLE VI

Case 2. Relative Error att = 1 for (T−χ)

1t u v w

10−3 3.4 · 10−4 3.4 · 10−4 1.6 · 10−5

10−2 5.0 · 10−4 5.0 · 10−4 4.7 · 10−4

10−1 5.0 · 10−4 5.0 · 10−4 4.7 · 10−3

1. 5.0 · 10−4 5.0 · 10−4 2.4 · 10−2

TABLE VII

Case 2. Relative Error att = 1 for (χ− T−χ)

1t u v w

10−3 7.3 · 10−5 7.3 · 10−5 1.5 · 10−5

10−2 5.0 · 10−4 5.0 · 10−4 4.7 · 10−4

10−1 5.0 · 10−4 5.0 · 10−4 4.7 · 10−3

1. 5.0 · 10−4 5.0 · 10−4 2.4 · 10−2

TABLE VIII

Case 3. Relative Error att = 4

1t (χ − T) (T − χ) (χ − T − χ) (T − χ − T)

10−3 4.5 · 10−4 3.0 · 10−4 7.5 · 10−5 1.3 · 10−4

10−2 6.5 · 10−3 2.0 · 10−3 1.8 · 10−3 3.7 · 10−3

10−1 5.9 · 10−2 2.0 · 10−2 1.8 · 10−2 3.7 · 10−2

1. 18.3 · 10−2 11.4 · 10−2 9.2 · 10−2 17.9 · 10−2
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The global results in Table VIII confirm that the splitting(T −χ) and(χ − T −χ) are
to be preferred in the coarse case and that(χ − T −χ) is only a first-order scheme.

Let us study in particular the errors associated with fast variables (u andv) and purely
slow ones (w). The previous theoretical study (see Lemma 3.5) led to{

leχ−T = (I −5)T5z01t + O(1t2)

leT−χ−T = (T5+5 T − 25 T5)z0
1t
2 + O(1t2).

(99)

We obtain straightforwardly

(I −5)T5 = 1

2

−1 −1 0
1 1 0
0 0 0

 (100)

and

T5+5T − 25T5 = 1

4

−1 −1 0
1 1 0

0.2 −0.2 0

. (101)

The splitting(χ − T) then admits a low error forw in contrast to the splitting(T −χ − T).
For the variablesu andv, one must verify

leT−χ−T ∼ 1

2
leχ−T . (102)

This is confirmed by Tables IX and X which indicate that the splitting(T −χ − T) performs
better than the splitting(χ − T) in the coarse case.

In the same way the splitting(T −χ) and(χ − T −χ) have a better accuracy for coarse
splitting time step. The splitting(χ − T −χ) is however only a first-order scheme (see
Tables XI and XII).

4.4. Stiff Case:χ1 =/ 0 and Commuting Condition (Case 4)

We keep the same matrixχ as before. The matrixT is now such that(I −5)T5= 0
is met. This is a sufficient condition for recovering the usual order: see equations (49) and
(60). We take

T =
−3 1 0
−3 1 0
0.2 0 −1

. (103)

Table XIII confirms the theoretical analysis. The splitting schemes indeed recover their
usual orders. The sequential order of operators to be split has lost any influence on the
accuracy.

5. THE REACTION-DIFFUSION CASE: SOME EXAMPLES

We will now focus on some examples of coupling between chemistry and diffusion in
a monodimensional case. One field of application is Air Pollution Modeling. The main errors



SPLITTING TECHNIQUES IN THE STIFF CASE 163

TABLE IX

Case 3. Relative Error att = 4 for (χ− T )

1t u v w

10−3 7.5 · 10−4 5.6 · 10−4 5.1 · 10−5

10−2 1.1 · 10−2 7.3 · 10−3 8.9 · 10−4

10−1 10.4 · 10−2 6.4 · 10−2 9.4 · 10−3

1. 40.5 · 10−2 14.5 · 10−2 4.1 · 10−4

TABLE X

Case 3. Relative Error att = 4 for (T−χ− T )

1t u v w

10−3 2.1 · 10−4 1.0 · 10−4 7.6 · 10−5

10−2 6.1 · 10−3 2.8 · 10−3 2.2 · 10−3

10−1 6.2 · 10−2 2.8 · 10−2 2.1 · 10−2

1. 33.6 · 10−2 12.6 · 10−2 7.3 · 10−2

TABLE XI

Case 3. Relative Error att = 4 for (T−χ )

1t u v w

10−3 3.2 · 10−4 3.7 · 10−4 2.0 · 10−4

10−2 8.2 · 10−4 1.8 · 10−3 3.4 · 10−3

10−1 1.3 · 10−2 1.4 · 10−2 3.3 · 10−2

1. 8.3 · 10−2 8.4 · 10−2 17.5 · 10−2

TABLE XII

Case 3. Relative Error att = 4 for (χ− T−χ )

1t u v w

10−3 1.7 · 10−5 1.3 · 10−4 7.6 · 10−5

10−2 1.2 · 10−3 2.2 · 10−3 2.2 · 10−3

10−1 1.6 · 10−2 1.7 · 10−2 2.2 · 10−2

1. 7.6 · 10−2 7.7 · 10−2 12.3 · 10−2

TABLE XIII

Case 4. Relative Error att = 4

1t (χ − T) (T − χ) (χ − T − χ) (T − χ − T)

10−3 3.25· 10−4 3.26· 10−4 ∼ 0 ∼ 0
10−2 3.25· 10−3 3.26· 10−3 2.88· 10−5 2.63· 10−5

10−1 3.26· 10−2 3.26· 10−2 2.35· 10−3 2.01· 10−3

1. 39.0 · 10−2 44.8 · 10−2 21.5 · 10−2 17.8 · 10−2
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induced by operator splitting are indeed produced by the uncoupling between chemistry and
diffusion (see [13] for a systematic study) and by the treatment of Boundary Conditions.
We do not deal with this last point.

Let us mention that the previous theoretical analysis must be applied carefully since the
chemical part is nonlinear. The first example below proves that the key point of the analysis
is the two timescales structure and does not rely on the linearity.

In the sequel we compute relative errors in the following way: a reference solution (zWS)
is computed with the Method of Lines. Ifzα is the solution given by a splitting method, we
define the usualL2 error norms as

ERRi
2(n,m) =

zi
MOL(n,m)− zi

α(n,m)

zi
MOL(n,m)+ atol

(104)

Ri
2(n) =

√√√√ 1

H

m=M∑
m=1

ERRi
2(n,m)

2
dx(m), R2(n) = 1

I

i=I∑
i=1

Ri
2(n), (105)

wherei , n, andm stand, respectively, for the species, iteration, and grid cell index (whose
whole numbers areI , N, andM), atol is a tolerance parameter,dx( j ) is the length of the
j grid cell, andH is the vertical height (∼1200 m).

There are 10 vertical cells (which is a realistic number). The turbulent diffusion coefficient
is constant (k= 5m2 · s−1).

Finally, let us mention that1t = 900 s is the classical value advocated for the splitting
time step [17].

5.1. Chapman’s Cycle for Ozone and Slow Diffusion (Case 5)

Let us first study as a simple case the tropospheric cycle of Ozone with slow diffusion.
The kinetic scheme is given in simplified form [10] by

NO+ O3
k1→ NO2 , NO2

k2→ NO+ O3, (106)

wherek1 andk2 are the kinetic rates given by the law of mass action.
We assume that the chemical kinetics induces a stiff dynamical system and we write

formally the chemical rate as

Ä

ε
= k1(NO)O3− k2NO2. (107)

We now study the reaction-diffusion system given by

dNO

dt
= −Ä

ε
+ k1NO,

dNO2

dt
= −Ä

ε
+ k1NO2,

dO3

dt
= Ä

ε
+ k1O3, (108)

wherek is a fixed turbulent diffusity coefficient (let us sayk∼O(1)) and1 denotes the
Laplacian operator (or a spatial discretization by finite differences). We do not take into
account any boundary conditions in this formal study.

By introducing the usual lumped species [6, 26, 27]

NOx = NO+ NO2, Ox = O3+ NO2, (109)
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TABLE XIV

Case 5. Relative ErrorR2 at t = 2000

1t (χ − T) (T − χ)

50 3.3 · 10−3 2.0 · 10−4

100 6.5 · 10−3 1.0 · 10−4

500 3.45· 10−2 1.8 · 10−5

1000 7.35· 10−2 8.3 · 10−6

2000 16.6 · 10−2 3.0 · 10−6

we have easily

dNOx

dt
= k1NOx,

dOx

dt
= k1Ox,

dO3

dt
= Ä

ε
+ k1O3. (110)

If the current value is(NOx,Ox,O3)n (n being the iteration index), we have at the next
splitting time step for the exact solution

(NOx)n+1 = exp(11t)(NOx)n, (Ox)n+1 = exp(11t)(Ox)n, Än+1 ∼ 0 (111)

up to first order inε, whereÄn+1 is the chemical rateÄ computed at iterationn+ 1.
The second substep of the splitting(1−χ) is now defined by

dNO∗∗x
dt

= 0,
dO∗∗x

dt
= 0,

dO∗∗3
dt
= Ä∗∗

ε
, (112)

where the initial conditions are the outputs of the first substep:

NO∗∗x (0) = exp(11t)(NOx)n, O∗∗x (0) = exp(11t)(Ox)n (113)

O∗∗3 (0) = exp(11t)(O3)n (114)

and we recover (111) and the solutionWSup to first-order inε. As mentioned before “the
error does not depend on1t in this coarse regime (with1tÀ ε)”!

We have performed some sumerical tests with

k1 = 1000, k2 = 2000, k = 5 (115)

in monodimensional computations. The results plotted in Table XIV confirm the previous
analysis. The splitting(T −χ) is better as1t increases due to the error for the transient

TABLE XV

Case 6. Final Relative ErrorR2 at t = 6× 3600

1t (χ − T) (T −χ) (χ − T −χ) (T −χ − T)

90 8.8 · 10−3 3.96· 10−3 7.2 · 10−4 3.0 · 10−3

300 3.25· 10−2 1.25· 10−2 2.08· 10−3 1.26· 10−2

900 11.0 · 10−2 3.84· 10−2 3.78· 10−3 4.47· 10−2
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TABLE XVI

Case 6. Global Relative Error

1t (χ − T) (T −χ) (χ − T −χ) (T −χ − T)

90 16.0 · 10−2 1.74· 10−2 1.06· 10−2 5.0 · 10−2

300 110.0 · 10−2 2.58· 10−2 1.55· 10−2 33.0 · 10−2

900 189.0 · 10−2 5.9 · 10−2 1.27· 10−2 63.0 · 10−2

phase, which is given by

O

(
exp

(
−1t

ε

))
. (116)

This example is a good illustration of the stabilizing effect of stiffness for splitting
schemes applied to well-partitioned systems.

5.2. A Real Case in Air Pollution Modeling (Case 6)

We have simulated a reaction-diffusion system with data given in [10]. Tables XV and
XVI give, respectively, theL2 relative error at the final timet = T (the length of computation
is 6 h) andL2 integrated during the whole time integration (global error).

The boundary conditions are dry deposition and emissions at the ground and no flux at the
top. We have performed a (crude) sensitivity analysis by canceling all boundary conditions.
As it does not affect the previous results, we think that the observed phenomena do not have
any connection with the treatment of boundary conditions.

We refer to [25] for an extensive numerical study in the framework of Air Pollution
Modeling.

CONCLUSION

We have proved here that the usual analysis for splitting errors fails in the stiff case. The
singular perturbation theory provides an appropriate framework for studying the coarse case
met in practice.

The comparison of the asymptotic behavior of each splitting scheme leads one to advocate
some of them: the key point is that the operator sequence is crucial and that the stiff operator
has always to be last in the splitting process.

Such an analysis is confirmed by numerical tests for the linear case and by examples
derived from air pollution modeling (Reaction-Diffusion).

In the future we will investigate the nonlinear case and the case of Reaction-Diffusion
more deeply.
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