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Operator splitting methods are commonly used in many applications. We focus
here on the case where the evolution equations to be simulated are stiff. We will more
particularly consider the case of two operators: a stiff one and a nonstiff one. This
occurs in numerous application fields (e.g., combustion, air pollution, and reactive
flows). The classical analysis of the splitting error may then fail, since the chosen
splitting timestepAt is in practice much larger than the fastest time scales: the
asymptotic expansioat — 0 is therefore no longer valid. We show here that singular
perturbation theory provides an interesting framework for the study of splitting error.
Some new results concerning the order of local errors are derived. The main result
deals with the choice of the sequential order for the operators: the stiff operator must
always be last in the splitting schemeg 2000 Academic Press

Key Words: operator splitting; stiffness; singular perturbation; reduction of
dynamical systems; reaction-diffusion PDEs; air pollution modelling.

1. INTRODUCTION

Operator splitting methods are widely used in many applications, such as Air Polluti
Modeling [10, 17, 30], combustion [19], or general hyperbolic systems [3, 9, 15]. Tt
first advantage of this approach is the use of specific tailor-made numerical solvers for €
physical phenomenon to be integrated (e.g., advection, diffusion, and chemical producti
The second advantage is the drastic reduction in CPU costs. Since the initial couj
system may be stiff (mainly due to chemical terms), the Method of Lines (MOL) could
highly expensive. The use of an implicit numerical scheme for the time integration is th
recommended and leads to a large amount of algebraic manipulations since the dimer
of the matrices to be inverted is typically given by the product of the number of variable
the chemical species, and the number of grid cells. Even if some structure can be explc
[5], the CPU costis therefore rather large. As the only term inducing local coupling betwe
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species is the chemical production, an operator splitting method reduces the dimensic
the matrices to be handled to the number of species.

The drawback of this method is however the error due to the uncoupling of operators.
classical analysis of such errors is based on asymptotic expansions of exponential oper
in the linear case [29, 34] with respect to the splitting time step. The generalization to
nonlinear case [13, 22] proceeds in the same way with the help of Lie derivatives.

We will particularly focus on the case for which only one operator induces stiffne
(which is often the case in practice). We then want to integrate a linear evolution syst
under a singular perturbation form

dz=<X+T>L 2(0) = 2o, (1)

dt 3

wheres is a small positive parameter tending taeeneasures the stiffness of the operator

£ and can be defined as the ratio of the fast time scales to the slow time scales.
First-order splitting schemes are easily defined by first integrating one operator and t

the other on time intervals of lengtkt (the so-called splitting time step). The usual analysis

in the linear case leads to a local splitting efmwhich is a second-order error ikt

T-T
m~<XX4>AF. )
&

Such an analysis is particularly hazardous in the stiff case, unless the splitting time
actually tends to zero in order to mett « . As modelers are supposed to use efficien
solvers for the time integration (that is to say implicit schemes) this cannot be satisfiec
practice since this would be equivalent to stability requirements similar to those needec
explicit schemes. Therefore we have in practice

At > ¢ (3

The usual analysis leading to Eq. (2) should indicate that the error grows with stiffne
Splitting errors are however rather low in practical situations (the errors due to the treatr
of boundary conditions being from now on neglected). The main reason for that is actu
the stabilizing effect of the stiffness: the theoretical counterpart of numerical stiffness
indeed the existence of an underlying reduced model [14, 21, 24, 28]. Another point of vi
is to say thaty lies in certain subspaces (even in the split model), such that the terms
magnitudes~* disappear in the previous formula.

We will therefore follow an alternative analysis:

e we first compute up to first order inthe reduced models for the coupled and the spli
schemes,
e we then compare witht tending to 0.

The main advantage of this double-limit approach is that the perturbation te¢mb)ifz
can be avoided.

Let us mention some related works to conclude. Such coarse integration has already
studied for hyperbolic systems with a stiff relaxation term [2, 3, 9, 15]. The purpose w
however slightly different and focused mainly on grid refinement and shock tracking.
similar analysis has been proposed in [1, 12] but was restricted to the oscillatory case, w



142 BRUNO SPORTISSE

is not pertinent for applications including phenomena such as chemical kinetics. Letus no
moreover that the focus was not put on the crucial role of the sequence of integration.
present article deals with the general case, both oscillatory and nonoscillatory, in cont
to [1, 12], although the emphasis is put on the nonoscillatory case.

After having defined some splitting techniques (Section 2), we investigate the propo
approach inthe linear case (Section 3). Some numerical tests are then presented in the |
case (Section 4) and for Reaction-Diffusion Partial Differential Equations issued from £
Pollution Modeling (Section 5).

2. SPLITTING TECHNIQUES

Let us consider the following linear evolution system:

%§=A2+Bz 200 =2, zeR", (4)

whereA andB are linear operators.
Let us first define the classical splitting schemes am], with At the splitting time
step.

2.1. First-Order Schemes
o (A-B) Splitting

We consider the scheme

92 _ Az 75(0) =1z on]0, At
{dr ( (044 ©)

ddz;* = Bz*, z**(0) = zZ*(At) on][0, At],

where the final value is given &/* (At).

e (B—A) Splitting

This method is defined by changing the sequence of successive integratioaridB.
Such schemes are first-order schemes with respect to the splitting time\sté&jor
instance the local error for the (A-B) splitting is given by

le = (exp(BAt)expAAt) — exp((A + B)At))zp. (6)

The usual study of this error is performed by asymptotic expansion and leads straight
wardly to

BA— AB
|e=——3——Aﬁm+oun% 7)

The global error is then a first-order error with respechtaunlessA and B commute.
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2.2. Second-Order Schemes

In order toimprove the accuracy, Strang [29] proposed to symmetrize the splitting sche
A first approach is to take

1
2(AD) = 5 (Zas(Al) + Zga(AD), ®)

wherezag andzg a are the solutions computed, respectively, with the schemes (A-B) a
(B—A). This is a rather expensive technique since each operator has to be integrated t
on the splitting interval.

Another less time-consuming approach is then defined by the scheme

9z — Az, z°(0)=12 on[0, 4]

9" — Bz, z*(0) =z (4') on[0 At] 9)

425 = Az, z7%(0) = z*(At) on |0, 5.

The final value is then given w**(%). We will name (A—B-A) this scheme and a scheme
(B—A-B) can be derived in the same way. The interesting point is that the local er
associated with this scheme is then

le = (exp(AAzt)exr(BAt)exp(AAzt> —exp((A+ B)At)> Z (10)
and an asymptotic expansion leads easily to
le = O(At). (11)

This scheme is then a second-order scheme and is used in practice for many applicati

Remark[Higher order terms]. Higher order terms can be computed with the use
the Baker—Campbell-Hausdorff formula. We refer for instance to [8, 13]. Numerous ¢
trapolation techniques have been proposed for improving the accuracy of such sche
[32].

Remark[Extension to the nonlinear case]. Such an analysis can be performed in
nonlinear case with the use of the Lie operator formalism [13, 22]. We do not focus here
this point since we instead want to stress the influence of the stiffness on such analysis.
linearity will not play any role in the following analysis but it will clarify the computations.
Nonlinear operators (associated with chemical kinetics) will however be taken into acco
in the numerical examples (Section 5).

2.3. No Time Splitting and Source Splitting

Another less common splitting scheme has been already proposed, mainly for Air Po
tion Modeling [11, 30]. Itis a slight modification of a first-order scheme as one operator (
us sayA) is supposed to be nonstiff. In order to avoid transient phases due to stiffness,
initial conditions for the second substep are not modified but a source term must be ac
in order to take into account the first substep.
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The proposed scheme can be put in the form

{f{j_zt* = Az, z°(0)=12 on|0 At]
(12)

ddzj = BZ* + Z*(AA#, Z*(0) = zp on|O0, At].

The final value is them** (At). Let us notice that this is equivalent to an explicit integratior
of the nonstiff operator A.

We will call this schemgNTS (in the terminology of [30] where such a scheme is
referred as “No Time Splitting”).

Let us compute the local error for this scheme. We have straightforwardly

(13)

At B
ZNTS(At) = exp(BAt) |:| —+ / eXK(—t B) dt EXF(AAt)|:| Z
0

At
We use the asymptotic expansion of the exponential operator and we obtain directly

A2+ B2+ BA

ZnTs(AL) = [' + (A+ B)At + 2

At? + O(At3)} 2 (14)
and
AB , 5
le = zyts(At) — exp((A+ B)At)zp = —— Az +0(Ar), (15)

which confirms the first-order nature of this scheme.

Remark [Why we do not consider the oth@dTS scheme]. AnothefNTS scheme can
of course be defined by reversing the sequence. We will not consider this scheme. The
immediate reason is that it is well understood that integrating explicitely a stiff operator (
us say B) makes no sense. The importance of finishing the integration with the stiff oper:
B will be stressed in the next section.

3. AN ALTERNATIVE APPROACH FOR SPLITTING ERRORS

3.1. Why the Classical Error Analysis May Fail in the Stiff Case

Let us now focus on the case

_x(&)
o &

A

., B=T, (16)

where x (¢) = xo+ ex1 IS a slow—fast operator which induces the stiffness (for instanc
chemical kinetics) and is a slow operator (for instance the spatial discretization o
diffusion).

Xxo and x; denote, respectively, the fast and slow parts ot is as expected a small
positive parameter supposed to tend to 0.

The key point is that

At > ¢ (17)
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is met in practice since tailored algorithms are used for the time integration of the s
operatorA. Let us mention thalt ~ ¢ or At < ¢ are exactly the stability requirements for
explicit schemes which are actually avoided in order to improve the CPU performance.
will name this practical case ttomarse case

Some immediate remarks can then be mentioned on the basis of the usual local errc
first-order schemes (e.d.T — x)) which yields

At?
Ie~<§T—T§> 202 (18)

by using (7) although higher order terms may be of course much larger.

1. The sequential order of integration should have no influence on accuracy in the u:
analysis: the schemé&3§ — x) and(x — T) should then have the same behavior. This i
rather surprising in the stiff case for which one operator is associated with slow dynar
(T) and the other one with slow and fast dynamig$. (f x is only concerned with fast
dynamics f; = 0) one could advocate to first integrate the fast dynami¢satd then the
slow ones T).

2. Suchalocal error would indicate that the error is an increasing function in the stiffne
ratio e (with a fixed At). This is in total contradiction with the widespread argument tha
splitting schemes have to be used for well separated timescales (relates @.

By anticipating the first example in Section 5, Fig. 1 gives the relative error for t
splitting schemesy — T) and(T — ) as a function of the splitting time step.describes
here a particular kinetic scheme arising in atmospheric chemistryTaddscribes the
discretization of a monodimensional diffusion term.

As a result of this test the sequence seems to be important. The scheme we na
advocated in our first remark is therefore not the good one: one has rather to begin
splitting process with the slow dynamicE)and to end with the fast dynamicg)

0.0 T ;

OG—© Chemistry-Diffusion -
s#——3% Diffusion-Chemistry

log(relative error)
]
w
=}
T

0.0 500.0 1000.0 1500.0 2000.0
splitting timestep

FIG. 1. Some surprising results (Example 5.1).
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Our second remark applies to the “good splittind” € x) after having noticed that
At — oo can be “replaced” witlh — 0 in a scaling analysis. This is a rather surprising be
havior: the bigger the splitting time step is, the more accurate the “good splitling ) is!

3.2. Reduction

In order to investigate such behavior we want now to replace the usual analysis
an alternative analysis. As the main difficulty is provided by stiffness, we compute t
underlying “reduced” model [14, 21, 23, 24, 28], which approximates the exact solution
to first-order ine. We will then compare the reduced models respectively associated w
the splitting schemes and with the exact solution which for both operators are integre
simultaneously.

Another point of view is that we want to assess the asymptotic behavior of the splitti
schemes with respect to an increasing stiffness @sds to 0): do the splitting schemes
preserve the same behavior as the exact solution?

We refer to [14, 21, 23, 24, 28] for the theoretical background and more details
reduction. We will only mention the kernel of this theory.

Let us recall that the stiff operatgris partitioned as

X = Xo+&x1, (29)
whereyo andy; stand, respectively, for the fast and slow parts.

Assumption: slow—fast structure for. We assume the “semi-stability” of the fast
operatoryo:

o the eigenvalues ofy are either null or have a strictly negative real part,
o the following subspace decomposition holds:

R" = ker(xo0) ® R(xo). (20)

Let us stress the fact that such an (apparently) technical assumption is usually me
chemical kinetics [14, 24].

Let n — p be the dimension dker(xo). Such an hypothesis justifies the existence of
change of basis

M=[P}, Mt=[P Q] (21)
Q
whereM, P, andQ are, respectively) x n, (n — p) x h,andp x n matrices.FTand(iare,
respectivelyn x (n — p) andn x p matrices.P is chosen such th& xo =0 that is to say
that the lines oP are given by a basis d®(xo)*. A consequence is that the columns@Jf
define a basis oR(xo) sincePQ =0.

Let us now write

x=Pz y=Qz XeR"P, yeRP. (22)

This change of basis is a decoupling transformatiois a slow variable whiley is a fast
variable since:

X0 _1 0 0
M=M= , 23
w2 3] )
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where—D = QxoQ is a strictly stable square matrix (whose dimensiop)isThis point
is easy to prove: leQxoQu=0 with ueR". We then haveQ QxoQu=0. By using
PP+ QQ=1 andPyo=0, this impliesxoQu= 0. That is to say thaQu e ker(xo). As
Q_u € R(x0) we haveu =0 and this ends the proof.

In the following we will refer to this new basis as tpartitioned basislt is now easy to
derive the evolution in this basis:

{‘fﬁ = Pxa(Px+ Qy) + PT(Px+ Qy) ”
e% = Cx— Dy +eQxa(Px+ QY +£QT(Px+ Qy)
with the prescribed initial conditions

X(0) = Pz0),  y(0 = Qz0). (25)

In our analysis we will first assume thatends to zero with a fixect (coarse case for
time splitting). The direct application of classical results of singular perturbation thec
[31] ensures the following result we give in a formal way.

THEOREM3.1. Up to a transient phaséof length Q(e)), the initial systen{24) can be
approximated up to first order in by the differential-algebraic syste¢af index1):

dx — = = =
pri Px1(Px+ Qy)+ PT(Px+Qy), 0=Cx— Dy (26)

with the modified initial conditionéconsistent with the algebraic constraint
x(0) = Pz(0),  y(0) = D1Cx(0). (27)

For t € [0, At] the error associated with the reduced solut{@®) can be put in the form

O(e)+ O (exp(—yTAt) ) , (28)

wherey > 0 depends only on D and indicates the rate of convergence toward the reduc
model.

Such an approximation is of course valid only in the coarse casg¢).

From now on the approximation symbebwill hold for the error associated with reduction
and its magnitude is given by (28).

If we go back to the initial basis, the reduced solution associated with the exact mo
(that is to say without splitting) is then easily given by

2ws(AD) ~ (P + QD *C)exf P(x1 + T)(P + QD*C)At] Pz, (29)
sincez= Px+ Qy. From now on the subscripts “WS” (Without Splitting) will stand for
the case for which the operators are integrated simultaneously..

We will write for convenience in the sequel

K=P+QDC, S=PxkK (30)
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K is a rectangular matrix defined by the change of variables from the reduced model to
initial basis.S is the slow term induced by the stiff operator in the reduced model. Wit
these notations we straightforwardly have the following lemma:

LemMA 3.1 (Reduced model for the exact solution WS).

Zws(At) ~ Kexd(S+ PTK)At]Pz (31)

3.3. Computing a Reduced Solution for the Splitting Schemes
Let us now calculate the reduced solution for each of the splitting schemes.

LEmMA 3.2 (Reduced model for different splitting schemes).

Zr_ (At) ~ K exp(SAt) P exg T At)zg

Z,_1(At) ~ expTAt)K exp(SAt) Pz

Z,—1-y(A) ~ K exp(S4!) P expTAH)K exp(S5L) Pz (32)
Zr_y—1(At) ~ exp(T5!) K exp(SAt) P exg(T4! )z

Zurs(At) ~ K exp(SAD[P + [ exp(—tS) dt PRI 17,

Proof. We keep the same notations as in Section 2 for defining the substeps of
splitting methods. We will omit some computations left to courageous readers (if any).
For the(T — x) splitting we have for the second step (by using (24) Witk 0):

G = Pra(Px +Qy™)
. _ _ (33)
gdglf: — Cx** — Dy** + SQXl(PX** + Qy**),
wherez**(0) = exp(T At)zy. We then have easily
Zr—_, (At) ~ K exp(SAt) P exg T At)zo. (34)

We proceed in the same way forthe—T), (x — T — x), and(T — x — T) splittings.
For the splitting (NTS) we must reduce the following ODE (see (12) and (24)):

{"éi" = Pxa(PX* + Qy*) + PAT @)
% = Cx — DY** + £ Qua(PX™ + Qy™)
with
expTAt) — |
AT = Mzo and Z*(0) = zo.
At

We obtain straightforwardly the reduced model in the form

dx**

= Py1Kx™ + PAT, 0=Cx* — Dy*, (36)

dt
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which leads after some calculations to:

expTAt) — |
T Ab) 2

At (37)

At
Znts(A) ~ K exp(SAt) {P +/ exp—tS) dtP
0

by using the definitior8= P x; K. We recover the desired formulam

In order to have a more elegant formulation of these models we introduce the sqt
matrix:

n=KP. (38)

LEmmA 3.3 (Projection onto the reduced model]l is a projection matrix onto the
reduced model. Moreover for any square matrix R

K expPRK)P = expITIR)II. (39)
Proof. Let us first notice that
1> =KPKP = K(PK)P (40)
with
PK=P(P+QD'C) = (41)

by usingPP = | andPQ =0.
I1 is therefore a projection matrix. The projection is made onto the reduced model sil

z=Px+ Qy, Cx—Dy=0&z=KPz=1Iz (42)
The second point is obtained by recurrence: for apy0,
K(PRK)"P = (ITR)"II (43)

which ends the proof. m

LEmmA 3.4 (Reduced solutions).The reduced solutions are then

zws(At) ~ expIT(x1 + T)AD)IIZ

zr_, (At) ~ expITx1 At) T exp(T At)zg

Z,_1(At) ~ expT At) expIT x1 At)1Zg

Z,_ 7, (A1) ~ exp(TTx1 5 IT exp(T At) exp(Tx1 5 ) Mzo
Zr_y—1(At) ~ exp(TS!) expI 2 AT exp(T 4! ) 2

(44)

Zurs(At) ~ exp(TT 1 A [T + [ exp(—tTTxy) dt [T EXRTA0-L) 5,

Proof. The proof is straightforward with Lemmas 3.1, 3.2, and 3 8.
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3.4. Local Errors for the Reduced Models

In order to compare these reduced models we now perform an asymptotic expansic
At as usual. For the splitting schemewe will write

le, = z,(At) — zws(Al), (45)

wherez, (At) andzys(At) denote the dominant term (up to first-ordee)rfor the reduced
solutions computed, respectively, for the splitting schenaad for the exact solution. We
have then the following result:

LEmMMA 3.5 (Local error for the reduced models).

ler_, = OT(I — MM)zpAt + O(At?)

le,_1 = (I — ) TTzAt 4+ O(At?)

le, 1, = IT( — Tz + O(At) (46)
ler_,_t = (T + NT — 2MT TIZ4 + O(At?)

lents= MIT(I — I)ZpAt + O(AL?)

Proof. After some tedious calculationsm

Let us notice that the accuracy seems to be poorer than in the nonstiff case (as the r
application of the usual analysis could indicate it).

The key point is however that some splitting schemes will preserve the structure of
reduced model, which allows then to improve the local order: that is to say that the compt
solution for these schemes is actually onto the reduced model. We indeed recover sec
order local error foy — T) if (I —II)TII=0, which is a very strong condition on the
operatord1 andT (a sufficient condition is for instance that they commute). On the othe
hand, we recover second-order local error or— yx) if (I —IT)zZo=0, which is only a
condition on the current valug. This is rather easy to meet for some schemes as the ne
lemma shows it.

LEmMMA 3.6 (Conservation of the exact reduced structur@he splitting schemegd —
x), (NTS,and(x — T — x) conserve the reduced manifold defined by the projection matri
IT:

Nzr_y=2zr_,, Nz, 7 ,=2,7,, Mznts= ZnTs (47)
which must be compared with
Mzws = zws (48)

e The splitting schemdyg — T) and(T — x — T) conserve the reduced structure under
the commuting condition

(1 —HTI = 0. (49)
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Proof. Let us consider a schemaewhich can be put in the form
z, =expII RHIIZ. (50)
We have directly
MexpM R) =11 — | +expIIR) (51)

by using the asymptotic expansion of the exponential operator and the fadi tisah
projection matrix. Then

[z, = exp[IR)HI1Z = z, (52)

since(l — INHIT=0.
This concludes the proof for the schent@s— x) , (NTS, and(x — T — x).

e By using (44) we can put the schemgs— T) and(T — x — T) in the form
Z, = expAT) expIlx At Z, A eR. (53)
By using once more the asymptotic expansion of the exponential operator one has
Zy = Z + (expAT) — DIT(%), (54)

where the stars stand for uncomputed terms. Let us assume that the decoupling conc
(49) is met:

T =ITII. (55)
It is easy to obtain by recurrence that for any 0 one has
T'M =1NT"M, (56)
which leads to
Z, =17 + (expAT) — DII(%). (57)

This ensureg, =11z,. =

RemarjCommuting condition]. The terminology we use is justified by the equivalenc
of (49) with

(TI — IIT)HIT = 0. (58)

The interpretation of this lemma is rather simple: the exact solW&and the splitting
schemes for which the stiff operatgr ends the iteration always preserve the reduce
structure of the coupled system. Indeed the stiff operator alone determines this struc
[21, 23, 28] whatever the nonstiff operator is and acts as a projection onto the redu
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b 2 y = h(z) 1-2
ﬁ NTS
y 2 ’ 2
1
1 /
x-T)

(T -x)

FIG. 2. Dynamical behavior of splitting schemes.

model. The integration of the nonstiff operator does not ensure that the solution remg
near the reduced model unless the commuting condition is met.

The dynamical behavior of the exact solutsand of the splitting schemes is indicated
in Fig. 2. The trajectories are plotted in the phase sgacg) and parametrized by tinte
The wide black curve is the reduced algebraic constraint defined in the general cas
y=h(x) (in the linear casey = D~'Cx). The numbers 1, 2, and 3 stand for the substep
of the splitting schemes. Numbers 1 and 2 stand, respectively, for the inner and outer la
for the exact solution.

Itis therefore logical to consider an initial conditiagbelonging to the reduced manifold

[zy = 79

for the splitting methods conserving the reduced structure. Let us notice that the e
solution satisfies such a requirement after the transient phase (whose ledgth)isJnder
this assumption, which is therefore satisfied without any loss of generality, the local err
can be simplified.
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LEMMA 3.7 (Local errors in the outer phase).

e Under the condition1zy = zy, the local errors for the splitting schemes conserving
the reduced structure are given by

ler_, = O(At?)
le, 1, = IT( — MTzA + O(Atd) (59)
|eNT52 O(Atz).

The splitting method$T — x) and (NTS are indeed first-order schemes while Strang
splitting (x — T — x) is only a first-order scheme.

e Strang splitting(x — T — x) is a second-order method if and only if the commuting
condition

OT( -MTN=0 (60)

is met.
e We recover the usual order for the splitting scherges- T) and (T — x — T) under
the commuting conditio(49).

Proof. Straightforwardly with(I —TT)[T=0. =

Remar{Commuting conditions]. The same remark as before holds for (60) written
the form

IOT(MT — TI) = 0. (61)
Let us notice that the decoupling condition (49) implies (60).

RemarKOrder reduction for ODEs]. The same phenomenon has already been obsel
for the numerical integration of stiff ODEs. In a few words, the study of local errors is usua
made with a fixed stiffness ratio (that is to say a fixed Lipschitz constant) and a time s
tending to O; that is, the study is done for stiff systems in a framework of an expli
integration! The practical order of accuracy is unfortunately often lower than the theoreti
one given by such an analysis. We refer to [20] and [4] for an alternative analysis. Let
mention that reduced solutions are also used in this context (see for instance [16, 18]).
use of such tools provided by numerical analysis is the topics of a joint work with J
Verwer [33].

3.5. Errors for Slow and Fast Variables

It could be interesting to study the errors as a function of the dynamical behavior of 1
variables: are there any differences between slow variables and fast variables?
This is a relevant question in practice for at least two reasons:

e oneis not necessary interested in having good accuracy for all variables (e.g., radi
may be not followed in chemical kinetics),

e such a study could indicate that it is better to work in a basis different from the initi
one.

We first investigate the case of purely slow variables (defined as the variables not ¢
cerned by stiffness). We investigate thereafter the case of the partitioned basis as defin
Section 3.2.
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3.5.1. Purely Slow Variables

Let us define the purely slow variables as those corresponding to null lings 8tich
purely slow variables are not directly affected by stiffness. It may then be expected t
accuracy is not greatly degraded for them.

LEMMA 3.8 (Splitting errors for purely slow variables)The local error for purely slow
variables is of second-order for the splitting schefpe- T).

Proof. We are going to investigate the local error derived in Lemma 3.5. Let us rec
that
le, 1 = (I — MTIzAt 4 O(At?). (62)

Leti be the number of purely slow variables (eventually zero). Let us suppose that (ev
tually after a permutation) the first variables are purely slow variables. We have then
keeping the same notations as before

I O
o[ ©
wherel is thei x i identity matrix andaisa(n— p—i) x (n—i) matrix. Moreover
Q=[0 b, (64)
wherebis ap x (n—i) matrix. We can then find® andQ_in the form
— I 0 - 0
b3 o [3

wherel isthei x i identity matrix,aisa(n—i) x (n — p—i) matrix andbis an—i)yxp
matrix.
Let us partition thep x (n — p) matrix C in the form

C=[Ci Cj (66)
with C; andC, being, respectivelyp x i andp x (n — p —i) matrices. We can then easily

compute

_ | 0
K=P DC= |- _ - 67
+Q {b DlCc, a+ bD‘ng] ©67)

in the same block partitioning.
In the same way

H:KP:[I 0], |—n=[0 0}, (68)
k k k *

where the asterisks stand for uncomputed blocks. We conclude with

*

(- T = [S 0} , (69)

which concludes the proof by using (62)m
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3.5.2. Partitioned Basis

We now investigate the choice of the basis: can we find a set of variables (other t
purely slow variables) such that the splitting error is lowered? We will study the errorint
partitioned basis.

For convenience we assume that

P=[l 0, Q=I[0 I], z=[x Yy (70)

This can be done without any loss of generality by working directly in the partitione
basis(x, y) as defined in Section 3.2. We then have in this basis (with a coherent blc
partitioning)

M= ! 0 (71)
~|bpc of
and we will write
Tux T,
T = { > Xy}. (72)
TYX Tyy

LEMMA 3.9 (Local errors in the partitioned basis)n the partitioned basis
| [ Tny 0] At?
€ Ty = Zo——
T bt U 0l 2
0 O
le,_t = At 73
x—T {U O}ZO (73)

—Txy D-IC Tey :| At

ler_,_1 = ——
Tt [U —~DCT,DIC D ICTy

27
with
U = Tyx + TyyD'C — D'C(Tyx + TxyD'C). (74)

Proof. The proof is easy to perform by using Lemma 3.5 and by computing the m:
rices. m

Remark[Lumped species and operator splitting]. Let us notice that some interesti
simplifications occur ifTyy = 0. By remembering thal stands for the matrix of diffusive
coefficients in the framework of Reaction-Diffusion equations, this assumption is me
intermolecular diffusion is not taken into account (which is the case for turbulent diffusior

The application of the previous results indicates then the loss of accuracy for the splitt
schemegyx — T) and(T — x — T) is associated only with the fast variables.

Lumped species [26, 27] are widely used in applications such as Air Pollution Modelir
This trick is equivalent to changing the basis of variables and with working directly wi
slow speciex (in our notation). Lumped species are recommended for use in tailor-ma
numerical solvers based on reduced mechanisms [6, 26]. The former resultis a confirme
that it is actually always better (whatever the numerical solver is) to use lumped specie
the framework of operator splitting: the accuracy for lumped species is indeed better t
for pure fast species if the splitting schenigs— T) and(T — x — T) are used.
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3.6. Well-Partitioned Time Scales

Let us now consider the case for whighis a purely fast operator whil& is a slow
operator. At the algebraic level one then has

x1=0. (75)

This can always be obtained in the general case by modifying the splitting method anc
addingy: to T before splitting.

It would be interesting to recover the intuitive feeling that the better partitioned the tin
scales are, the more accurate is the splitting scheme.

3.6.1. Singular Perturbation as a Time Splitting Approach in the Well-Partitioned Case

The former analysis holds but the comparison of the exact solWiSwith the splitting
(x —T) is enlightening. The singular perturbation theory indeed justifies that the initi
slow—fast model can be approximated up to some ordesrshiynintegrating successively
the fast and then the slow operator. The sch¢me T) then seems to be highly natural.
Why is there a loss of accuracy even in this well-partitioned case ? Let us recall the sing
perturbation procedure by formulating Theorem 3.1 in the following way:

1. First integrate the inner layer on, [&[:

dx* dy*
@w-% @

t
Cx* — Dy*, wheret = —, (76)
&

which provide the modified initial conditions (27). This is exactly the first step of the splittin
scheme(x — T) as£! tends to+oo!
2. Then integrate the outer layer on [8t]:

dz*
dt

— T 2%, 77)

where the projection matrix has to be applied in order to modify the initial ®erihis is
exactly the reduced model (26). This must be compared with the second step of the split
schemgy — T):

dz+

=Tz" 78
at (78)

The error for this scheme is obviously associated with the departure from the redu
manifold as it has been already proved in the former results. The most accurate split
scheme would be the scheme derived from singular perturbation theory, that we could (
mally) write (y — I1T). Letus notice that under the assumptitns> ¢, the accuracy of such
a scheme is dominated byand does not depend on the splitting timestépn this sense!

RemarfReduction vs operator splitting] There is a kind ofrade-off between Operator
Splitting and Reduction. The most physical splittifigs{—slovy is given by the reducing
approach (that is to say, the singular perturbation procedure): this is a highly accul
splitting (the error does not depend An) but it is an expensive method (one must compute
the projection matrid1: that is to say, to compute the reduced chemical mechanism
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TABLE |
Reduction versus Operator Splitting

Method CPU performance Accuracy
Reduction could be expensive high(e)
(computell(2))
Splitting slow—fast good mediun®(At)
Splitting fast—slow good low

the usual framework [26]). Slow—fast operator splittifig x) is then the only alternative
method: it is a very cheap one (nothing to do) but the price is the splitting error due to
fact that it is a nonphysical splitting (see Table I).

3.6.2. A Particular Case: Highly Accurate Splitting

Such an attractive feature can be performed with the classical splitting scliemesg),
(NTS), and(x — T — x) in particular cases.

LeEMMA 3.10 (Commuting case).Under the commuting condition
OT( —M) =0 (79)

the splitting schemed — x), (NT 9, and(x — T — x) are highly accurate in the coarse
case(At > ¢):

IeT_X = O(e), IeX_T_X = O(e), |eNT52 O(e). (80)

Proof. Let us recall that the reduced solutions, which have been previously comput
are approximations of the exact solutions associated with each scheme up to first erder
Zws~ exXpIT T At)I1zy
zr_, ~ IexpTAt)zg
Z, 1, ~ expT At)I1zy
Znts ~ [Texp(T At)zp.

(81)

We use asymptotic expansions of the exponential operators and the proof is then stra
forward by recurrence. Let us suppose that for any1,

MT)"=0T", OT"0=0T7" (82)
Under the assumptiol T =TITII
M = M@= [THOT" = MTIHT"=0OT7TT" (83)
OT™ = OTOT" = OT(IT) = OTOT " =TT, (84)
which concludes the proof.m
Remar{Commuting condition]. Equation (79) can be written as

I(TI — TII) = 0. (85)
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This is equivalent tdy, =0 (with the same notations as before) since

-TyD™'C T
N7 —1) = o Y (86)
-D-ICTyDIC D CTyy
It is therefore associated with the following form of system to be split:
dx d
o = Tox gd—i' — Cx — Dy + £(Tyxx + TyyY). 87)

Let us notice that the usual analysis does not give any such information. A direct cal
lation leads for instance to a commutator:

0 0

T-Tx= :
X X CTXX - DTxy — Txyc Tny — DTyy

(88)

Remarl{Validity of the assumption]. Let us notice that such a condition may occur i
the Reaction-Diffusion case with a purely fast chemistry and a diagonal diffusion matr
Formally,

Txx = kxxl N Txy = Tyx = O, Tyy = kyyl N (89)

wherel stands for Identity matrices.

This is the case for instance in Air Pollution Modeling where the turbulent diffusio
matrix is a diagonal matrix (no diffusion between species). We will go back to this rema
in Section 5.

RemarKkDecoupling condition] Letus notice thatthe decoupling condition (79) (which
ensures highly accurate splitting) implies the decoupling condition (60) (which ensures t
(x — T — x) is a second-order method).

3.7. Summary of the Main Results
Let us now summarize the main points of our analysis in the coarse case:

e The “first-order” splitting scheme&T — x) and(NTS) are indeed first-order schemes.

e The “second-order” splitting schemgg — T — x) is only a first-order scheme in the
general case.

e Therespectively “first-order” and “second-order” schemgs— T) and(T — x — T)
give only poor accuracy. However, for purely slow variables we recover the usual order

e The usual orders are maintained under the condition

(1 =TI =0. (90)

Remark[After all, stiffness is a good thing!]. What about the global error as orde
reduction occurs?

The key point is that stiffness has a stabilizing effect and that the local errors for f:
species do not propagate. The following simple example is an enlightening illustration (
general case can be computed in the same way),

dx dy x-y

- X dtT .

(91)
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The slow and fast operators are repectively associated with the time integraxi@mady.
Let n be the iteration index. The exact solution is then

_ Xpe ™At X At
XXY'_S]_ =e AtXn, yx\_/,i = ;j + <yn - ].—ns)eXF<_8). (92)

Let (Xn + 12, yn + n2) be the solution computed with the bad splitting (fast-slow), whgre
andn? denote global errors afteriterations. We have very easily for the splitting fast—slow:

_ _at
Xni1 = € (X + ﬁrll)’ Vi1 =Xn + np + (yn + N — Xn — "%)e c. (93)

The interesting point is that the error for slow specig¥ (s stabilized and that the first-
order local error for fast specieg?) has been put to zero (since it appears in the bounda
layer term)! The only error which propagates is the error for slow spegjgsvhich is a
second-order error.

4. SOME NUMERICAL TESTS IN THE LINEAR CASE

We have performed some numerical tests in order to illustrate the previous analysis i
linear case. We have used the solver LSODE [7] with highly accurate absolute and rela
error parameters: the parameters andatol are set, respectively, to 1& and 10°1°.

We have integrated linear ODEs R® and we write agu, v, w) the variables to be

integrated.
In the following, we have mainly studied a fast part of the stiff operator given by
—1000 1000
X0 _ 11000 —1000 q, (94)
¢ 0 0o 0
which corresponds to a stiffness ratie= 10-2. The following results are not modified by
changinge.
It is easy to derive the projection matrix
1 11
nm=-11 1 0. (95)
0 0 2

In the previous terminology andv are concerned with fast dynamics whileis a purely
slow variable.

We have used a splitting timesteyt ranging from 1. to 16%. We expect to recover the
usual analysis witlAt = 10~3 and to confirm our analysis for the coarse case= 0.1 and
At =0.01. The case\t = 1. is highly coarse (even if it could correspond to the practica
situation) and we expect only to confirntrandin this case.

4.1. Nonstiff Case (Case 1)

We first study the nonstiff case withy =0 and

x=x1=|1 -1 0, T=|2 -2 o]. (96)
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TABLE Il
Case 1. Relative Error att=4

At x=T (T=x) xX=T-=x (T—=x-T)
102 1.39.-10* 1.41.10* ~0 ~0
102 1.39.10°3 1.39.10°3 1.21-10°° 7.6-10°°
10t 1.37.107? 1.41-1072 1.01-10°3 8.66-10*

1. 8.8-102 11.4.107? 6.3-107? 5.14.10°7?

As Table Il shows, we recover the classical behaviottigends to 0. The order is actually
confirmed and there is no difference between the first-order schemes (respectively, betv
the second-order schemes).

4.2. Stiff Case:x; =0 and No Commuting Condition (Case 2)

We have kept the same matiixas before but we have now

—1000 1000
x=2_1|1000 —-1000 0, (97)
¢ 0 0 o0

which corresponds to the stiff case wjth= 0. Table Il indicates that the schem@s— )
and(x — T — x) have a better accuracy in the coarse cgge- T — x) is however only a
first-order scheme in this regime (which is equivalent With— yx) in this particular case).
Itis interesting to confirm the previous analysis concerning purely slow variables. In tl
caseu andv are concerned with fast dynamics whileis a purely slow variable in the
previous terminology. The relative errors plotted in Tables IV, V, VI and VIl confirmdhat
is not affected by the loss of accuracy in the schewes T) and(T — x — T) in contrast
to fast variablesi andv. The error forw is indeed the same for all schemes.

4.3. Stiff Case:x1 # 0 and No Decoupling Condition (Case 3)
We have kept the same matiixas before but we have now

~1000 1000 1
x =| 1000 —1000 2], (98)
0 1 -1

which corresponds tg; #0.

TABLE Il
Case 2. Relative Error att=1

At x—T (T-x) x=T=x) (T—-x-T)
1073 44.10 2.33-10* 5.4.10°5 11.-10*
102 6.4-10°3 4.88.10* 4.87-10* 3.13-10°3
102 5.9.10°2 1.91.10°3 1.91-10°3 3.21-102

1 218.107? 8.31-107° 8.31-107° 17.8-10°2
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TABLE IV
Case 2. Relative Error att=1 for (x — T)

At u v w
102 6.55-10* 6.55.10 1.6.-10°
102 9.35.10°° 9.35.10°3 47.10*
101 8.6-1072 8.6-107? 3.0.10°

1. 320.10?2 320.10°? 24.10°7?

TABLE V

Case 2. Relative Error att=1 for (T — x —T)

At u v w
103 1.6-10% 1.6-10* 1.6-10°
102 45.10°° 45.10°° 46-10*
101 46-102 46-102 45.10°°

1. 26.0-10°? 26.0-10°?2 1.7-102

TABLE VI

Case 2. Relative Error att=1 for (T — x)

At u v w
102 34.10* 34.10* 1.6-10°
102 5.0-10* 5.0-10* 4.7-10*
101 5.0-10* 5.0-10* 47-10°°
1. 5.0.-10* 5.0.-10* 2.4.10?
TABLE VI

Case 2. Relative Error att=1for (x — T — x)

At u v w
103 7.3-10°° 7.3-10°° 15.10°°
102 50-10* 50-10* 4.7-10*
10 50-10* 50-10* 4.7-10°8
1. 5.0.-10* 5.0.-10* 2.4.10°?
TABLE VIII
Case 3. Relative Error att=4
At (x-=T) (T—=x) xX=T-=x) (T—x-T)
1073 45.10* 3.0-10* 75.10°° 1.3-10*
102 6.5-10° 2.0-10°3 1.8-10° 3.7-10°3
101 59.107? 2.0-107? 1.8-10°7? 3.7-10°7?

1 183.10? 114.102 9.2.1072 17.9.10?
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The global results in Table VIII confirm that the splittiig — x) and(x — T — x) are
to be preferred in the coarse case and that T — x) is only a first-order scheme.

Let us study in particular the errors associated with fast variablesdv) and purely
slow ones (). The previous theoretical study (see Lemma 3.5) led to

le,_t = (I — I TIzAt + O(At?) (99)
ler_y—r = (TN +IT -2 TMz5 + O(At?).
We obtain straightforwardly
1 -1 -1 0
(I —H)Tn=E 1 1 0 (100)
0O 0 O
and
1 -1 -1 0
TO4+OT -200TII=-| 1 1 0. (101)
02 -02 O

The splitting(x — T) then admits a low error fap in contrast to the splittingT — x — T).
For the variablesi andv, one must verify

1
IeT,X,T ~ EIeX,T. (102)

This is confirmed by Tables IX and X which indicate that the splittihg- x — T) performs
better than the splittingy — T) in the coarse case.

In the same way the splitting’ — x) and(x — T — x) have a better accuracy for coarse
splitting time step. The splittingx — T — x) is however only a first-order scheme (see
Tables Xl and XlI).

4.4. Stiff Case:x; # 0 and Commuting Condition (Case 4)

We keep the same matrix as before. The matriX is now such thatl — IT)TIT1 =0
is met. This is a sufficient condition for recovering the usual order: see equations (49)
(60). We take

31 0
T=|-3 1 o0]. (103)
02 0 -1

Table XllI confirms the theoretical analysis. The splitting schemes indeed recover tt
usual orders. The sequential order of operators to be split has lost any influence on
accuracy.

5. THE REACTION-DIFFUSION CASE: SOME EXAMPLES

We will now focus on some examples of coupling between chemistry and diffusion
amonodimensional case. One field of application is Air Pollution Modeling. The main errc
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At u v w
103 7.5-10* 5.6-10* 51-10°
1072 1.1-102 7.3.10°3 8.9.10*
101 104-102 6.4-10°2 9.4.10°3
1. 405-102 145.1072 4.1.10*
TABLE X
Case 3. Relative Error att=4for (T — x —T)
At u v w
103 21-10* 1.0-10* 7.6-10°
1072 6.1.-10°2 2.8.10°3 22.10°°
10t 6.2-1072 2.8-1072 21-1072
1. 336-102 126-102 7.3-10°?
TABLE XI
Case 3. Relative Error att=4 for (T — x)
At u v w
1073 32.10* 3.7-10* 2.0.10*
102 8.2.10* 1.8.10°3 34.10°
101 1.3.10? 1.4.10? 3.3.1072
1. 8.3-1072 8.4.1072 175.102
TABLE Xl
Case 3. Relative Error att=4for (x — T — x)
At u v w
103 17-10° 1.3-10* 7.6-10°
1072 1.2.10°° 22.10°3 22.10°°
10 1.6-10? 1.7-10? 22-1072
1. 7.6-102 7.7-10°2 123-102
TABLE Xl
Case 4. Relative Error att=4
At x-T T=x x-T-x T=x-T)
103 3.25-10* 3.26-10* ~0 ~0
102 3.25-10°° 3.26-10°° 2.88-10°° 2.63-10°°
101 3.26-10°2 3.26-10°? 2.35.10°3 2.01-10°
1. 39.0-10°2 44.8.10°2 215.10° 17.8-102
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induced by operator splitting are indeed produced by the uncoupling between chemistry
diffusion (see [13] for a systematic study) and by the treatment of Boundary Conditiol
We do not deal with this last point.

Let us mention that the previous theoretical analysis must be applied carefully since
chemical part is nonlinear. The first example below proves that the key point of the analy
is the two timescales structure and does not rely on the linearity.

In the sequel we compute relative errors in the following way: a reference solagign (
is computed with the Method of Lines. f, is the solution given by a splitting method, we
define the usudl, error norms as

Zyo (N, M) — Z,(n, M)

ERR(n, m) = —MO
R(n, m) ZyoL (N, M) + atol

(104)

. 1 m=M ) 1 i=l )
Ry(n) = J = O ERR(Mumdxm), R =Y Ry, (105)
m=1 i=1

wherei, n, andm stand, respectively, for the species, iteration, and grid cell index (who:
whole numbers aré, N, andM), atol is a tolerance parametatx(j) is the length of the
j grid cell, andH is the vertical height{1200 m).

There are 10 vertical cells (which is a realistic number). The turbulent diffusion coefficie
is constantk =5m? - s71).

Finally, let us mention thatt =900 s is the classical value advocated for the splitting
time step [17].

5.1. Chapman’s Cycle for Ozone and Slow Diffusion (Case 5)

Let us first study as a simple case the tropospheric cycle of Ozone with slow diffusi
The kinetic scheme is given in simplified form [10] by

NO+ Os 8 NO,, NO, 8 NO+ Os, (106)

wherek; andk; are the kinetic rates given by the law of mass action.
We assume that the chemical kinetics induces a stiff dynamical system and we w
formally the chemical rate as

% = ky(NO)Os — kosNOy. (107)

We now study the reaction-diffusion system given by

dlOz—ngkANO, dN—OZ =—9+kANOZ, d_O3 = E+kA03, (108)
dt e dt & dt e
wherek is a fixed turbulent diffusity coefficient (let us s&y~ O(1)) and A denotes the
Laplacian operator (or a spatial discretization by finite differences). We do not take i
account any boundary conditions in this formal study.
By introducing the usual lumped species [6, 26, 27]

NOy = NO+ NO,, Ox = O3 + NOg, (109)



SPLITTING TECHNIQUES IN THE STIFF CASE 165

TABLE XIV
Case 5. Relative ErrorR, at t =2000

At x-T T=x
50 33.10°° 2.0-10*
100 651073 1.0-10*
500 345.1072 1.8-10°°
1000 735.102 8.3-10°°
2000 166-1072 30-10°¢
we have easily
dN d d Q
NG _yano,. 9% ka0, 9B _ 8 a0, (110)
dt dt dt &

If the current value iSNOy, O, O3), (n being the iteration index), we have at the next
splitting time step for the exact solution

(NO)nt1 = eXpAAL) (NOy)n, (O)nt1 = eXPAAL)(Oy)n, Qn1~0 (111)

up to first order ire, whereQ2,,, ; is the chemical rat& computed at iteration + 1.
The second substep of the splittityy — x) is now defined by

= = = 112
dt ' dt ' dt e’ (112)
where the initial conditions are the outputs of the first substep:
NG (0) = exp(AAL) (NGO, O0;*(0) = exp(AAL)(Ox)n (113)
03*(0) = expAAt)(O3)n (114)

and we recover (111) and the solutidfSup to first-order ire. As mentioned before “the
error does not depend axt in this coarse regime (witht > ¢)”!
We have performed some sumerical tests with

ky = 1000 k,=2000 k=5 (115)

in monodimensional computations. The results plotted in Table XIV confirm the previo
analysis. The splittingT — x) is better asAt increases due to the error for the transien

TABLE XV
Case 6. Final Relative ErrorR, att=6 x 3600

At (x—=T) (T—=x) x=-T-x) T—=x-T)

90 88-10° 396-10°3 7.2.10* 3.0-10°3
300 325-102 1.25.10°7 2.08.10°® 1.26-102
900 110-102 3.84.1072 3.78-10°° 4.47.1072
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TABLE XVI
Case 6. Global Relative Error

At (x—=T) (T=x) X=T-x) T—=x-T)

90 160-10°2 1.74.102 1.06-102 5.0-102
300 1100-1072 2.58.1072 155.1072 33.0-102
900 1890-1072 59.102 1.27-10? 63.0-1072

phase, which is given by

@) (exp(—i'{)). (116)

This example is a good illustration of the stabilizing effect of stiffness for splitting
schemes applied to well-partitioned systems.

5.2. A Real Case in Air Pollution Modeling (Case 6)

We have simulated a reaction-diffusion system with data given in [10]. Tables XV al
XVIgive, respectively, thé , relative error at the final time= T (the length of computation
is 6 h) andL , integrated during the whole time integration (global error).

The boundary conditions are dry deposition and emissions at the ground and no flux a
top. We have performed a (crude) sensitivity analysis by canceling all boundary conditic
As it does not affect the previous results, we think that the observed phenomena do not |
any connection with the treatment of boundary conditions.

We refer to [25] for an extensive numerical study in the framework of Air Pollutiot
Modeling.

CONCLUSION

We have proved here that the usual analysis for splitting errors fails in the stiff case.
singular perturbation theory provides an appropriate framework for studying the coarse
met in practice.

The comparison of the asymptotic behavior of each splitting scheme leads one to advo
some of them: the key point is that the operator sequence is crucial and that the stiff oper
has always to be last in the splitting process.

Such an analysis is confirmed by numerical tests for the linear case and by exam
derived from air pollution modeling (Reaction-Diffusion).

In the future we will investigate the nonlinear case and the case of Reaction-Diffusi
more deeply.
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